Nuprl Definition : abs-fifo
11,40
postcript
pdf
abs-fifo{i:l}(
C
;
T
)(
es
,
In
,
Out
)
==
i
:
C
.
==
f
:{
e
:E| abs-R (
i
,
e
)}
{
e
:E|
j
:
C
. (abs-S (
j
,
i
,
e
))}
==
(
e
.
j
:
C
. (abs-S (
j
,
i
,
e
))
f
e
.abs-R (
i
,
e
)
==
& (
e
:{
e
:E| abs-R (
i
,
e
)} ,
j
:{
j
:
C
| abs-S (
j
,
i
,
f
(
e
))} . (
Out
(
e
).2) = (
In
(
f
(
e
)).2))
==
& (
e
,
e'
:{
e
:E| abs-R (
i
,
e
)} ,
j
:
C
.
==
& (
(abs-S (
j
,
i
,
f
(
e
)))
(abs-S (
j
,
i
,
f
(
e'
)))
f
(
e
) c
f
(
e'
)
e
c
e'
))
latex
clarification:
abs-fifo{i:l}(
C
;
T
)(
es
,
In
,
Out
)
==
i
:
C
.
==
f
:{
e
:es-E(
es
)| abs-R(
C
;
Out
)(
i
,
e
)}
{
e
:es-E(
es
)|
j
:
C
. (abs-S(
C
;
In
)(
j
,
i
,
e
))}
==
(antecedent-surjection(
es
;
e
.abs-R(
C
;
Out
)(
i
,
e
);
e
.
j
:
C
. (abs-S(
C
;
In
)(
j
,
i
,
e
));
f
)
==
& (
e
:{
e
:es-E(
es
)| abs-R(
C
;
Out
)(
i
,
e
)} ,
j
:{
j
:
C
| abs-S(
C
;
In
)(
j
,
i
,
f
(
e
))} .
==
& (
(
Out
(
e
).2) = (
In
(
f
(
e
)).2)
T
)
==
& (
e
:{
e
:es-E(
es
)| abs-R(
C
;
Out
)(
i
,
e
)} ,
e'
:{
e
:es-E(
es
)| abs-R(
C
;
Out
)(
i
,
e
)} ,
j
:
C
.
==
& (
(abs-S(
C
;
In
)(
j
,
i
,
f
(
e
)))
==
& (
(abs-S(
C
;
In
)(
j
,
i
,
f
(
e'
)))
==
& (
es-causle(
es
;
f
(
e
);
f
(
e'
))
==
& (
es-causle(
es
;
e
;
e'
)))
latex
Definitions
x
:
A
B
(
x
)
,
Q
f
P
,
x
.
A
(
x
)
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
s
=
t
,
t
.2
,
X
(
e
)
,
{
x
:
A
|
B
(
x
)}
,
E
,
abs-R
,
x
:
A
.
B
(
x
)
,
abs-S
,
P
Q
,
f
(
a
)
,
e
c
e'
FDL editor aliases
abs-fifo
origin